Center for Neuroregeneration

9

Faculty With Academic Appointments

40

Peer-reviewed Publications in 2023

About the Center

Our mission is to generate therapies for people who suffer from chronic paralysis and neurologic loss due to devastating injury, stroke or degenerative disease. The Center for Neuroregeneration is comprised of laboratories with expertise in neural stem cell biology, neural activity and stimulation, robotics, cell growth, myelin and the genetic regulation of plasticity. The Center for Neuroregeneration focuses on collaborative problem solving and bioengineering approaches that are incubated within our research laboratories as well as through strategic partnerships with clinical and biotherapeutic entities.

Signature projects include a focus on restoration of locomotor and sensory function through neural stimulation and promotion of innate regenerative capacity through cell and gene therapy. Researchers have also harnessed the tools of cell engineering to create human neural circuits within experimental microenvironments to better model disease and produce neural replacement parts for repair of the brain and spinal cord.

Our Research Labs

Neuroplasticity & Repair

Horner Lab

The Neuroplasticity & Repair lab specializes in neural stem cell biology, neural activity and stimulation, robotics, cell growth, myelin and the genetic regulation of plasticity. Signature projects include a focus on restoration of locomotor and sensory function through neural stimulation and promotion of innate regenerative capacity through cell and gene therapy. Researchers have also harnessed the tools of cell engineering to create human neural circuits within experimental microenvironments to better model disease and produce neural replacement parts for repair of the brain and spinal cord.

Astrocellular Therapeutics

Krencik Lab

The Astrocellular Therapeutics lab is specifically focused on understanding the functional relationship of human neurons and astrocytes in normal and injured states. We employ novel three-dimensional human pluripotent stem cell-based culture techniques, electrophysiology, transplantations and molecular/biochemical approaches to regenerate neural cell types.

Neuromodulation & Recovery

Sayenko Lab

The Neuromodulation & Recovery lab is focused on the development of neuromodulatory strategies to promote functional recovery and mobility after neuromuscular disorders and injuries, including stroke and spinal cord injury. We employ a wide variety of approaches and techniques in our research, which include epidural and transcutaneous spinal stimulation, transcranial magnetic stimulation, peripheral nerve stimulation, as well as electromyography, kinematic analysis, posturography, and neuroimaging.

Brain Periphery Research

Villapol Lab

The Brain Periphery lab is focus on the pursuit of novel neurorestorative treatments for debilitating brain injuries to open the door to alternative therapies that repair and recovery in the damaged brain through the periphery. Our research interests are mainly focused on the elucidating of mechanisms of cell death, gliosis, inflammation, and neurogenesis via models of brain damage (ischemia and trauma), and how inflammatory mediators connect the brain with the periphery.

Get In Touch

Center for Neuroregeneration
Department of Neurosurgery
Houston Methodist Research Institute
6670 Bertner Ave.
Houston, TX 77030

CNR@houstonmethodist.org
Research News
doctor holding a tablet with a chest scan on it's screen
Personalized Treatment Strategies for Lung Cancer
Houston Methodist researchers identified a novel and innovative marker to guide Immune Checkpoint Inhibitor Therapy for Lung Cancer.
woman sitting on an examination table in a doctor's office
Trailblazing New Perspectives: Treating Gynecological Cancers
The goal of this new study was to evaluate the feasibility of a phase three, multi-center randomized clinical trial comparing the efficacy of minimally invasive surgery with that of the traditional open method approach (laparotomy) in treating epithelial ovarian cancer.
arm in blood pressure testing machine
Getting to the Heart of Hypertension Disparities
Researchers address social risk factors for high blood pressure through a national study.
Evolving Treatment Beyond Pharmaceuticals
First-of-its-Kind Study Explores Novel Prescription Digital Therapeutic
An Unusual Presentation of Glioblastoma
Andrew Lee, MD, Herb and Jean Lyman Centennial Chair in Ophthalmology, recently published one of the first-ever reported cases of progressive vision loss as the presenting manifestation of recurrent GBM with secondary LMS to the optic chiasm.
Engaging T cell Exhaustion for Solid Tumor Immunotherapies
Houston Methodist researchers investigated T cell exhaustion in murine models of prostate cancer and melanoma to explore possible advancements in immunotherapies for solid tumors.
Fighting a Deadly Duo
Investigating therapeutics to fight deadly TB/HIV coinfections.
Houston Methodist, Rice University launch groundbreaking Digital Health Institute
This initiative builds on ongoing collaborations between Houston Methodist and Rice University to transform the future of health care.
Stage I Nodal Marginal Zone Lymphoma Treatment Landscape
Houston Methodist researchers compared systemic therapy and radiation therapy in Stage I Nodal Marginal Zone Lymphoma Patients
2024 Digital Health Workshop Seed Fund Award Winners Announced
Houston Methodist researchers and their collaborators from Rice University have been awarded grants from the 2024 PATHS-UP Digital Health Workshop.
Pilot Study Offers Insight Into Alzheimer’s Research Participants Perceptions and Self-Efficacy
In a Houston Methodist study, Alzheimer’s disease research participants showed a high interest in genetic testing and provided valuable insights that can improve how test results are disclosed.
Breast Cancer Cells
Nanomedicine Makes Big Strides in the Fight Against Breast Cancer
Researchers deliver immunotherapy directly into triple-negative breast cancer tumors with nanofluidic implants, achieving tunable and sustained dosing of immunotherapeutics with high anti-tumor activity.
headshot of Constance Mobley smiling
Liver Failure Avengers Houston Methodist Researchers First in World
Under the leadership of Constance Mobley, MD, PhD, FACS, researchers have successfully performed a first-in-human miniature liver hepatocyte transplant to change a patient’s lymph nodes into ectopic miniature livers.
Predicting the Future of Cancer Treatment

Houston Methodist faculty developed a multiscale mechanistic model to further investigate the role of miR-155 in non-small cell lung cancer and predict clinical efficacy based on preclinical data.

Taking a Closer Look at West Nile Neuroimaging

A case report reviewing West Nile neuroinvasive disease imaging characteristics and the differential diagnosis of acute leukoencephalopathy highlights the usefulness of neuroimaging in WNND diagnosis in the absence of CSF markers.

Ending Organ Transplant Rejection

Studies at Houston Methodist suggest a novel strategy that may potentially eliminate or diminish transplant rejection, autoimmune diseases, and the need for immunosuppressive drugs

Location, Location, Location is Key to Pancreatic Cancer Prognosis

Molecular alterations found in pancreatic ductal adenocarcinoma samples may have potential therapeutic implications

Donate to Houston Methodist

With your support, Houston Methodist provides exceptional research, education, and care that is truly leading medicine.

Donate Now